Positive Example Learning for Content-Based Recommendations: A Cost-Sensitive Learning-Based Approach

نویسندگان

  • Yen-Hsien Lee
  • Paul Jen-Hwa Hu
  • Tsang-Hsiang Cheng
  • Ya-Fang Hsieh
چکیده

Existing supervised learning techniques can support product recommendations but are ineffective in scenarios characterized by single-class learning; i.e., training samples consisted of some positive examples and a much greater number of unlabeled examples. To address the limitations inherent in existing single-class learning techniques, we develop COst-sensitive Learning-based Positive Example Learning (COLPEL), which constructs an automated classifier from a singleclass training sample. Our method employs cost-proportionate rejection sampling to derive, from unlabeled examples, a subset likely to feature negative examples, according to the respective misclassification costs. COLPEL follows a committee machine strategy, thereby constructing a set of automated classifiers used together to reduce probable biases common to a single classifier. We use customers’ book ratings from the Amazon.com Web site to evaluate COLPEL, with PNB and PEBL as benchmarks. Our results show that COLPEL outperforms both PNB and PEBL, as measured by its accuracy, positive F1 score, and negative F1 score.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Formulation for Cost-Sensitive Two Group Support Vector Machine with Multiple Error Rate

Support vector machine (SVM) is a popular classification technique which classifies data using a max-margin separator hyperplane. The normal vector and bias of the mentioned hyperplane is determined by solving a quadratic model implies that SVM training confronts by an optimization problem. Among of the extensions of SVM, cost-sensitive scheme refers to a model with multiple costs which conside...

متن کامل

A Novel Architecture for Detecting Phishing Webpages using Cost-based Feature Selection

Phishing is one of the luring techniques used to exploit personal information. A phishing webpage detection system (PWDS) extracts features to determine whether it is a phishing webpage or not. Selecting appropriate features improves the performance of PWDS. Performance criteria are detection accuracy and system response time. The major time consumed by PWDS arises from feature extraction that ...

متن کامل

طراحی یادگیری مبتنی ‌بر وب با تأکید بر معرفت‌شناسی سازنده‌گرایی

  Current growth of philosophical and educational theories and computer technology has provided new forms of education in the world. Modern world has features such as communication, non-congruence, and flexibility. Therefore, web and other multimedia technologies are just information and application resources unless could provide learning field and content. The purpose of this study is reconstr...

متن کامل

An Effective Approach for Robust Metric Learning in the Presence of Label Noise

Many algorithms in machine learning, pattern recognition, and data mining are based on a similarity/distance measure. For example, the kNN classifier and clustering algorithms such as k-means require a similarity/distance function. Also, in Content-Based Information Retrieval (CBIR) systems, we need to rank the retrieved objects based on the similarity to the query. As generic measures such as ...

متن کامل

بررسی دیدگاه اعضای هیئت علمی دانشگاه پیام نور به رویکرد یادگیری ترکیبی بر حسب متغیرهای فردی و سطح مهارت‌ رایانه‌ای

In recent decades, electronic learning has attracted remarkable attention. But due to the defects and weaknesses of merely electronic learning, the blended learning approach has gradually come to existence, and worldwide tendency to use this new approach is increasing, because of its advantages and positive features. Considering the importance of the views of scientific staff members of the ble...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009